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Operator splitting with complex fractional-steps, perhaps regarded as a mathematical 
curiosity, is shown to be a feasible tool for stable numerical solution of ordinary as well as 
partial differential equations. This result may appear surprising, as in Q. Sheng (IMA J. 
Numer. Anal. 112 (1989)) stability of a splitting is defined as equivalent to the presence of all- 
positive fractional steps. Equivalences between the classes of fractional-step operator splittings 
for autonomous nonlinear scalar differential equations and splittings for vector evolution 
equations which involve linear operators are established. The implication is that results for the 
well-investigated linear case can be applied over a larger class of problems. Further analysis 
reveals circumstances in which the splitting concept can be used to broaden the range of 
stability of algorithms which may be used for the numerical solution of ordinary differential 
equations. Thus, alternatives to the usual methods for stiff systems integration become 
available. .R 1991 Academic Press. Inc. 

Operator splitting via the method of fractional steps has been widely envisaged 
as an approach to synthesis of numerical schemes for problems posed in spaces of 
higher dimension, by utilizing well-known algorithms strictly applicable in spaces of 
lower dimension. Classically, the majority of applications have been restricted to 
order of accuracy P< 2. However, with the advent [l] of essentially non- 
oscillatory (ENO) one-dimensional shock-capturing schemes of higher order 
accuracy (P d 15), strong interest in the capability for application to higher dimen- 
sional problems has arisen [2]. 

Investigation of the existence of higher order accurate, fractional-step operator 
splittings for evolution equations which involve linear operators has produced 
discouraging results: for third-order accuracy, no splittings exist which involve 
all-positive fractional steps [3]. However, the existence of third-order accurate 
splittings characterized by complex fractional steps has been theoretically predicted 
[4], although no specific examples are given. 

Unfortunately, the idea of complex fractional steps perhaps has been regarded a 
mathematical curiosity, as no practical applications are known to the authors. 
Therefore, one objective of the present paper is to derive some of the complex split- 
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tings whose existence is suggested in [4]; to establish that they can be practically 
applied in numerical solution of differential equations; and to provide evidence that 
these numerical calculations are stable. 

Stable calculation in such manner has not previously been anticipated. Indeed, in 
Ref. [3], stability is defined as being equivalent to the presence of all-positive 
fractional steps. 

A second objective is to explore equivalences between families of splittings for 
diverse kinds of evolution equations. It is established that third-order accurate, 
fractional-step splitings for equations which involve only linear operators are also 
applicable to a class of scalar nonlinear differential equations. This allows broader 
application of the more readily obtained operator fractorizations of linear equations 
[I3,41. 

Finally, a scheme is revealed by which operator splitting can be used to broaden 
the range of stability of algorithms for the numerical solution of ordinary differen- 
tial equations. It is shown that the scheme provides alternatives to the classical 
methods for stiff systems integration. Some highly accurate splittings are derived, 
whose order of accuracy is N = 3, 4, 5. These splittings are used to demonstrate the 
concept. 

A METHOD OF UNDETERMINED FRACTIONAL STEPS 

There is now considered the problem of finding fractional-step operator splittings 
for the class of evolution equations 

$4(u)+B(u) 
(1) 

u(e, to) = U”(6). 

Here, u is an n x 1 vector, and A, B are mutually non-commutative general 
linear operators which commute with the time derivative operator. It is remarked 
that Eq. (1) can represent systems of either ordinary or partial linear differential 
equations, as well as more general kinds of evolution equations. 

The equations 

dv 
(:t=&), 

aw 
z= B(w) 

are referred to as the natural spliting associated with (1). It is assumed that the 
Cauchy initial-value problems for Eqs. (l)-(2) are well posed, over some finite time 
interval of length T, on which there exist operators L,, L,, which are third-order 
approximations to the transfer functions of the Cauchy problem for Eqs. (2). 
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With rk = hkT and Un = U(-, t,), asymptotic faCtOriZatiOnS Of the transfer operator 
for solutions of (1) are to be investigated, which are of the fractional-step form 

u n+1 = L>“. L~.ZLp4”+O(t4). (3) 

A method of undetermined fractional steps (UFS) which reveals restrictions on 
the rj is now given. For linear equations, this method is equivalent to the approach 
[4] of truncated exponential operator expansions. However, the approach [4] does 
not generalize to nonlinear equations, whereas the present method does. This is 
because truncations of the operator expansion 

u(t + r)=exp(zQ) u(t) = (If rQ + ($)‘/2 + ...) u(t) (4) 

afford a valid approximation to the transfer function of equations such as (2) only 
when Q is a linear operator. However, when Q is nonlinear, one need only replace 
powers Q”(u) with formal derivatives D”“u( t) obtained from the evolution equation 
which is under consideration. There results nth order canonical approximation 
operators 

(5) 

where 

P,,(x)= 1 +x+ ‘.. +x”/n! (6) 

Referring to Eq. (3), define fractional steps 5, = /rj~., and let 

L’: = P,, (T/A ), LT.! = P,,(zk B). (7) 

When (7) is substituted in (3), terms of order n + 1 are neglected, and coefficients 
of like operators are equated with those of the expansion 

~(t+~)=P,,(t(A+B))u(t)+0(t”+‘) (8) 

there results a system of determining equations for any existent fractional-step 
splitting whose order of accuracy is n. 

It is to be noted that if too few operator factors are attempted in Eq. (3) insuf- 
ficient terms may result to equate coefficients of like operators. When the product 
(3) is not operator poor, there may result extraneous determining equations; one 
must discard equations which are either repeated or which are functionally depen- 
dent upon others. There results a minimal generating ser (MGS) of determining 
equations for the appropriate fractional steps of a splitting for the linear system ( 1). 
Sheng [3] shows, in a slightly more general context, that all-positive solutions to 
the MGS do not occur, if IZ is larger than two. By examination of the MGS, it has 
been verified independently by the authors that no all-positive solutions occur, for 
linear splittings having eight or fewer operator factors. 



306 COOKE AND MCMORRAN 

ASYMPTOTIC FACTORIZATION OF ORDINARY DIFFERENTIAL OPERATORS 

In this section the method of UFS is used to obtain fractional-step asymptotic 
factorizations of the form (3) for the transfer function of the initial-value problem 

u(t,) = zig. (9) 

The equivalence of systems (9) and (1) under the operation of asymptotic factoriza- 
tion by equation splitting is then established. Some particular splittings which may 
be used for either system are obtained. It is shown in the sequel that the splittings 
obtained in this section may be used to enhance the stability of classical algorithms 
for numerical integration of ordinary differential equations. The feasibility of using 
complex fractional steps is also investigated. 

Let L,, L,. be third-order approximations to the initial-value problems which 
result from the natural splitting of (9) which separates a(u), b(u). Employing the 
UFS method, there results the following minimal generating set of equations which 
determine six-factor, third-order fractional step splittings of the form (3) for (9): 

h,+h~+h,=l (10) 

h*+hq+he= 1 (11) 

h,h,+(h,+h,)(h,+h,)+h,h,=+ (12) 

h,h,(h, + hh) + h,h,(h, + h4) = 6 (13) 

h,h*(h, + hs) + (h, + h,vLA = b. (14) 

By setting h, =0 there is obtained the minimal generating set of determining 
equations for live-factor, third-order splittings. If now hS, h, both vanish, the 
resulting system (lo)-( 14) is inconsistent; no third-order, four-factor splittings for 
problem (9) exist. 

It is noted that the UFS method when applied to the linear equation (1) 
generates a system of 14 equations in six unknowns. This system may be reduced 
to Eq. (lo)-14), by throwing out equations which are linear combinations of, or 
functionally dependent upon, the above minimal set. In the parlance of Strang [5], 
as regards the algebra involved, it is every man for himself. 

As Eqs. (lo)-( 14) represent the same minimal generating set of equations which 
is obtained when the UFS method is applied to the problem of determining six- 
factor fractional-step splittings for system (1 ), the following theorem is established: 

THEOREM I. An equivalence class of approximate factorizations. A necessary 
and sufficient condition that third-order, five- or six-factor fractional-step splittings of 
(9) exist is that the linear system (1) have third-order, five- or six-factor splittings 
whose fractional steps also serve system (9). Thus, the initial-value problems (1) and 
(9) are equivalent, as regards fractional-step splitting. 
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Splitting in Complex Time 
According to Theorem I, the splittings for (I), (9) are revealed once an 

exhaustive analysis of Eqs. (lo)-( 14) is accomplished. Unfortunately, system 
(lo)-( 14) possesses no solutions which provide splittings having all-positive 
fractional-steps. Only complex solutions are available when h, = 0; if h, does not 
vanish, factorizations having either complex or mixed positiveenegative fractiona 
steps exist. A solution of (lo)-(14) which provides a non-standard five-factor 
splitting for both Eq. (9) and its linear equivalent (1) is the following: 

h =-id 
1 12 ’ 

hl=;, h,=i(3--iJ?) 

h =3+id 
2 6 ’ 

h,=$(3-i$). 
(15) 

At first glance it might appear that complex-time operator factorization has small 
merit. Depending upon the approximation operators L.,, L,., this could be the case; 
for example, EN0 schemes [l] are not known to be adaptable to complex time. 
However, as may be seen by the numerical experiments reported in the sequel, 
finite-differencing can produce operators which are so adaptable. The general rule 
is that any real functions involved must admit an analytic continuation whose 
complex values are machine calculable, and the numerical algorithm must be 
compatible with generalization to complex functions. 

Mixed Positive-Negative Steps 
Any reluctance to abide with complex fractional-step splittings for the linear 

equations (1) requires one to consider more than five factors in the splitting, if 
third-order accuracy is desired. It has been verified independently by the authors 
that no all-positive step, third-order accurate splitting having less than nine factors 
can exist. Reference [3] shows that no all-positive step splitings of any sort exists, 
whose order of accuracy exceeds two. For completeness, there is now indicated the 
existence of one six-factor, third-order mixed positiveenegative fractional step 
splitting for systems (l), (9): 

hb=&, h5=gr h,= -&, h,= -3, h, = 2, h,=& (16) 

Eight-Factor Splittings 

The minimal generating set of determining equations for up to eight-factor 
splittings of Eq. (1) is given by: 

h, +h,+h,+h,= 1 (17) 

h2+h4+h6+hs= 1 (18) 

h,+h,(l-h,)+hg(hg+/zg)+h7h8=~ (19) 

h,h,U-h,)+(h,+h,)h,(h,+h,)+hgh7(1-h7)=i (20) 

h,h,(l -h,)+(h,+h,)h,(h,+h,)+h,h,(l -h,)=& (21) 
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A STIFF SYSTEMS APPLICATIONS OF OPERATOR SPLITTING 

Consider now a quasi-linear vector system 

dli 
~=mf(u) 

u(O)=u, 

(224 

(22b) 

System (22) shall be called linearly srz#provided the matrix A has widely separated 
eigenvalues, each having negative real part, whereas the nonlinear system obtained 
when A is set to zero is not a stiff system. Much research has been devoted to 
numerical methods for efficiently solving stiff linear systems. 

An idea for treating the stiffness of the composite system (22) is to associate with 
the stiff linear part its exact transfer operator L,, while an approximate operator 
L,. is associated with the non-stiff, nonlinear part. The total system is now solved 
with some approximate operator composite of L,, Lj. of the form (3). Through use 
of this device, and when a non-stiff numerical integration scheme is involved, larger 
time increments than the non-split system allows can now be employed, the size of 
which is dictated only by the nonlinear part of Eq. (22). Of course, the trade-off 
is that the efficiency gained in step-size must not be completely offset by the 
inefficiency in operation count which arises from the splitting. For those whose 
interest is reliable numerical output without consideration of stiffness, this approach 
should be ideal. 

This method has the flexibility of allowing the order of accuracy of the numerical 
integration scheme which is used on the nonlinear part to be, consistently, as high 
as is compatible with the accuracy of the splitting. Here, it is remarked that many 
stiff integration packages vary the order of accuracy of the scheme used as the 
solution progresses, in order to remain in the stable regime. Since the exact linear 
transfer operator is exp(At), which is absolutely stable if A has left half-plane 
eigenvalues, the stability of the present scheme is dictated by the (assumed small) 
eigenvalues inherent in the nonlinear part of Eq. (22). The resulting numerical 
integration algorithms shall be called essentially absolutely stable, as the small 
eigenvalues of the well-behaved nonlinear part pose no real threat to stability. 

A Scalar Numerical Example 

Consider now a simplified linearly-stiff problem, arising in the heory of nonlinear 
oscillations, which serves to illustrate the features of the method: 

du 
x = - 5ou + cos( u), u(0) = Pi/2. (23) 

The solution of Eq. (23) exhibits boundary-layer behaviour near t = 0, quickly 
damping monotonicly to the steady solution (see Fig. l), which is approximately 
u = 0.019996. If Eq. (23) is solved numerically employing a third-order accurate 
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FIG. 1. No splitting versus Strangs second-order accurate splitting. 

Runge-Kutta scheme, the time-step stability restriction is, approximately, r < 0.04. 
With r = 0.045, the numerical solution oscillates, due to the stability, and is highly 
inaccurate. However, with the same Runge-Kutta scheme and the same time-step, 
but applying Strang’s second-order accurate splitting [S], the numerical solution 
converges monotonically, in seven steps, essentially as near as it can get thereafter 
to the steady solution (see Fig. 1). Hence, the splitting approach eliminates the 
stability problem; stepsize is now dictated by the truncation error of the scheme. 
A broadening of the range of stability for the Runge-Kutta method has been 
achieved via the spliting technique. Figure 2 illustrates the broadening of stability 
attainable by using the five-factor, third-order complex splitting of Eq. (15), the use 
of which is allowed by Theorem I. 

Splitting of Vector Nonlinear Systems 

The behaviour characteristic of the previous example has also been experienced 
when numerically solving with a third-order accurate splitting the stiff systems test 
problem [6] given by 

dx 
z- 

- -2000x + 1oooy + 1000, x(O)=0 (24) 

4 
z=x-y3 4’(O) = 0. (25) 
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FIG. 2. No splitting versus complex third-order accurate splitting. 

Solution of system (24)-(25) requires synthesis of new splittings, as will now be 
indicated. Consider vector nonlinear equations of the form 

$= A(u) + C(u). (26) 

Here, C(U) = c is a constant vector mapping defined on R,,, while A is any linear 
operator which commutes with the time differentiation operator and whose powers 
AP, P = 1, 2, . . . . n do not annihilate C. In this event, all-positive-step, nth order 
accurate splittings of system (26) require only n + 1 factors. Typical such splittings 
(refer to Eq. (3)) are now indicated: 

A ,fourTfuctor, third-order splitting, 

h, =O, h, = f, 4=$, h4=$ h, = 4. (27) 

A ,five:factor, ,fourth-order splitting, 

h, =o, h2 = 4, h, = ;> h,=$, h, = 4, hb=i. (28) 

A six-fuctor, fifth-order splitting, 

h, =o, h2 = $, h, = (6 - fi)/lO, h, = (16 + J8)/36 (29a) 

h, = &I% hh=(16-$)/36, h7 = (4 -,/%)/lo. (29b) 
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FIG. 3. Comparison of splitting accuracy. 

The stiff system (24)-(25) has eigenvalues 

R = - 1000.5 - ~1,000,000.25 

s = - 1000.5 + J?j%iGGz 

Wa) 

(Job) 

The x-component of the solution exhibits boundary layer behaviour near t= 0, 
whereas the y-component is of slow growth. 

Numerical solution of (24)-(25) has been accomplished using Runge-Kutta 
integration of order n = 3,4, 5 and the higher order, fractional-step splittings of 
Eqs. (27)-(29). Figure 3 exhibits the expected broadening in the range of stability 
which is achieved by the splitting. Also as expected, a better approximation is 
achieved by using the higher order splittings. 

It is expected that the method can be applied to stiff systems, in general, through 
periodic extraction of a stiff linear part Ju, where J is the Jacobian matrix evaluated 
at some fixed instant. However, this may be an expensive operation. 

COMPLEX-TIME SPLITTING OF A PARTIAL DIFFERENTIAL EQUATION 

Some numerical experiments are now presented which verify the increased 
accuracy of the corresponding operator splitting (15), as compared to that of the 
second-order splittings of Strang [S]. The problem under consideration is 

au au ~+u~+u-u*=o, @la) 

u(x, 0) = exp(x), -I<x<l (31b) 

which has the solution u = exp(x - t). 
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TABLE I 

Comparison of Splitting Accuracy 

Exact Strangs All-positive Complex 
solution 3-factor 4-factor 5-factor 

0.9801986733 0.9801987089 0.9801986733 0.9801986733 
1.0202013400 1.0202013814 1.0202013401 1.0202013401 
1.0619365465 1.06 18365946 1.0618365466 1.0618365466 
1.1051709181 1.1051709739 1.1051709181 1.1051709181 
1.1502737989 1.1502738637 1.1502737989 1.1502737989 
1.1972173631 1.1972174385 1.1972173631 1.1972173632 
I .2460767306 1.2460768 183 1.2460767306 1.2460767307 
1.2969300867 1.2969301888 1.2969300867 1.2969300868 
1.3498588076 1.3498589265 1.3498588076 1.3498588077 
1.4049475906 1.4049477291 1.4049475906 1.4049475907 
1.4622845894 1.4622847509 1.4622845894 1.4622845896 
1.5219615556 1.5219617438 1.5219615556 1.5219615558 
1.5840739850 I .5840742045 1.5840739849 1.5840739851 

By employing third-order backward differences on the space derivatives in 
Eq. (31), there is obtained a vector system of form similar to Eq. (9). This system 
is split such that L,, L,. produce third-order accurate Runge-Kutta approximations 
to the systems derived from (31) which involve only time derivative and, respec- 
tively, the source term or space derivative in (31). The live-factor, complex-time 
fractional-step splitting of Eq. (15) is applied to this vector system of finite 
difference equations. Problem (31) is also solved numerically using a third-order, 
four-factor splitting [7] which employs all-positive fractional steps. 

Table I shows a comparison of results for numerical solution of (31) obtained by 
Strang’s second-order splitting [S], versus the third-order, all-positive step splitting 
of [7], and the complex-time splitting (15). There appears to be essentially four 
more correct digits in numerical results from the higher-order splittings. The 
stepsize ? =O.OOl was used, and results after 20 cycles are shown. The accuracy 
is not affected when a large number of cycles is employed; thus, it is concluded by 
numerical experimant that the complex-time splitting is stable. 
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